Math 245C Lecture 12 Notes

Daniel Raban

April 26, 2019

1 More Properties of Convolutions and Generalized Young's Inequality

1.1 Uniform continuity and vanishing of convolutions

Let's continue the proof of this statement from last time.

Theorem 1.1. Let $1 \leq p, q, \leq \infty$ be conjugate exponents. Let $f \in L^p$ and $g \in L^q$. Then

1. f * g(x) exists for each $x \in \mathbb{R}^n$, and

$$|f * g| \le ||f||_p ||g||_q.$$

2. f * g is uniformly continuous.

3. If $1 , then <math>f * g \in C_0(\mathbb{R}^n)$.

Proof. We have already proven the first statement. To prove the second, it suffices to show that

$$\lim_{y \to 0} \|(f * g) - f * g\|_u = 0.$$

Note that if $1 \leq p < \infty$,

$$\tau_y(f * g) - f * g = ((\tau_y f) - f) * g.$$

 So

$$\|\tau_y(f*g) - f*g\|_u \le \|\tau_y f - f\|_p \|g\|_q \xrightarrow{y \to 0} 0,$$

When $p = \infty$, q = 1, and we interchange the role of f and g.

Assume $1 so that <math>1 < q < \infty$. Choose $(f_k)_k, (g_k)_k \in C_c(\mathbb{R}^n)$ such that

$$\lim_{k \to \infty} \|f - f_k\|_p = 0 = \lim_{k \to \infty} \|g - g_k\|_q.$$

By the first proposition stated last time, $f_k * g_k \in C_c(\mathbb{R}^n)$. We have

$$f * g - f_k * g_k = f * (g - g_k) + (f - f_k) * g_k,$$

 \mathbf{SO}

$$||f * g - f_k * g_k||_u \le ||f||_p ||f - f_k||_q + ||f - f_k||_p ||g_k||_q \xrightarrow{k \to \infty} 0.$$

Since $C_0(\mathbb{R}^n)$ is the closure of $C_c(\mathbb{R}^n)$ in the uniform norm, we get the result.

1.2 Generalized Young's inequality

Theorem 1.2. Let $1 \le p, q, r \le \infty$ be such that $1 + r^{-1} = p^{-1} + q^{-1}$. Let $f \in L^p$.

1. (Generalized Young's inequality) If $g \in L^q$, then

$$||f * g||_r \le ||f||_p ||g||_q.$$

2. Further assume $1 < p, q, r < \infty$ and $g \in \text{weak } L^q$, Then there is a constant $C_{p,q}$ independent of f, g such that

$$||f * g||_r \le C_{p,q} ||f||_p [g]_q.$$

3. If p = 1 (so $q = r < \infty$), there exists a constant C_q independent of f such that for any $g \in \text{weak } L^q$,

$$[f * g]_r \le C_q ||f||_1 [g]_q$$

Proof. For now, we only prove the first statement. Split into cases:

- 1. $r = \infty$: This is part 1 of the previous theorem (Young's inequality).
- 2. p = 1, q = r: We have already proven this.
- 3. $1 < p, q, r < \infty$. Since $r^{-1} = p^{-1} + q^{-1} 1 < q^{-1}, q/r \in (0, 1)$. Set t = 1 q/r. Define the operator T as

$$(Tf)(x) = f * g(x) = \int_{\mathbb{R}^n} K(x, y) f(y) \, dy, \qquad K(x, y) = g(x - y).$$

We want to use the Riesz-Thorin interpolation theorem. By Young's inequality,

$$||T\varphi||_{\infty} \le ||\varphi||_{\frac{q}{q-1}} ||g||_q.$$

Also,

$$||T\varphi||_q \le ||\varphi||_1 ||g||_q.$$

If we set $p_0 = 1$ and $q_0 = q$ and set $p_1 = q/(q-1)$ and $q_1 = \infty$, then we get that T is weak type $(p_0, q_0 \text{ and } (p_1, q_1)$. Set $t = 1 - q/r \in (0, 1)$, and define $p_t = \frac{1-t}{p_0} + \frac{t}{p_1}$, $q_t = \frac{1-t}{q_0} + \frac{t}{q_t}$. By the Riesz-Thorin theorem,

$$||Tf|| \le M_0^{1-t} M_1^t ||f||_{p_t} = ||g||_q ||f||_{p_t},$$

where $M_0 = M_1 = ||g||_q$. Note that $\frac{1}{q_t} = \frac{1-t}{q} + \frac{t}{\infty} = \frac{q}{r} \frac{1}{q} = \frac{1}{r}$. Similarly, $\frac{1}{p_t} = \frac{1}{p}$.